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51(8)= §1 %% [a,7,(cos 8) + b,T,(cos 8)],
85(0) = i — 1) [ba7,(cos 8) + a,T,(cos 8)], (7.66)

where

1
7, (cos 6) g Pl(cos ),
7, (cos 8) 4 P (cos 8
: (cis gy = !(cos ),
do 5Q)

P! is an associated Legendre polynomial, and the coefficients a, and b,
are given by

_ ¥n(m)a (x) — A, () ., (x)
Wa(ix) Ea (x) — My, (rix) Eo(x)

_ MY (mx)Ya (x) — 9, (7x) p,(x)
Ty (mx) Ea(x) - Ya(mx)Ea(x)

where
Y,(x) = (ém)ln‘fn+!f2(x)l
gﬂ (x) = (ém)lnHﬁz—le(’r):

are Riccati-Bessel functions and J,,,» and H% ,, are spherical Bessel
" functions. The Bessel functions have zeros that increase in number with
the size of the argument, with the result that S; and S, can change rapidly
for very small variations of x.
If extinction and scattering efficiencies alone are required these can
be obtained from the expressions

e
Q.= 3 (n+1)(a,+ b,
) ": (7.67)
Q.= 2 (2n+1)(1a.l* +16.).
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clouds often differ markedly from Deirmendjian’s
model, it serves the purpose of averaging out most of
the large fluctuations which occur in the phase function
(scattering diagram) for a single sphere. We have made
preliminary computations to find the effect of changing

/
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FIG. 1. Single-scattering phase functions for a size distribution of transparent spherical particles with
a real refractive index typical of water and ice in the near infrared; the curves show the effect of changing
the characteristic particie size. In Figs. 1-3 the vertical scales apply to the uppermost curve on the left
side and the scales for the other curves may be obtained by multiplication by a power of 10 such that the
horizontal bar on each curve occurs at p(f) =1.
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F1c. 2. Single-scattering phase functions for a size distribution of spherical particles showing the effect of
absorption within the particles for large particles (r.=32) and particles of moderate size (zm=2).

the shape of the size distribution; the results for several
different distributions indicate that the volume extinc-
tion (vext), the single scattering albedo (w), the asym-
metry factor ({cosf)), and the shape of the phase func-
tion (oustide the region of the glory) depend mainly on
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The curve 5=0in Figure 8 gives Q,, for a single particle, as a function of x=2nri
This curve is characterized by a series of major maxima and minima of wavelengtl

~10 in x"and superimposed ‘ripples’ of wavelength ~0.8 in x. They: AjOrfmaxim .
,and;minima“are”’due 0" Interference-of ‘light difiracted"(7=0fand tranemm =1

I00

is normalized so that the integral over all sizes is N = 1

' Qscn

-

eS¢ tWO components making up.~935%, of the scatm I

& e e dol 3 :
4). The phase shift for a light ray passing through the sphere along a diameter &

¢=2x(n.—1). Thus constructive (or destructive) interference occurs successively
intervals ~2x in g, or ~9.5 in x for n,=1.33. The curves of Q... for other values d
n, are qualitatively similar if graphed as a function of p, as shown in Figure 32 of vas
de Hulst (1957). . , -

The ripple on the Q,, curve for a single particle arises from the last few significant
terms in the Mie series, (2.42), as demonstrated by Bryant and Cox (1966). According

o}

to the localization principle these terms arise from edge rays, i.e., from the light rays 1,¢ 5. Effcercy factor -
grazing the sphere. These rays set up surface electromagnetic waves which travel standard sire dntnbution

around the sphere spewing off energy in all directions. Since there are focal points at

H

b-0, 2
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It is not difficult to extend (8.49) or (8.47) to miﬂticomponent mixtures. If we
make the same assumptions for each inclusion that were made preceding
(8.48), then the average dielectric function is
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FiG. 1. Extinction efficiency as a function of the phase shift parameter p for
particles composed of stacked cylinders. The vertical lines show these results
for different orientations of the electric vector (Greenberg er al., 1971). The tri-
angles are the Mie scattering predictions for equal volume spheres having the same
refractive indices. The phase shift parameter is defined by (1) in the text.

stacked cylinders (Greenberg et al., 19‘2-’1). The
parameter p is defined b

= Ama(m, — VA =2x(m, - 1), (1)

where a,, m,, A and x are, respectively, the radius
of an equal volume sphere, real part of the index of
refraction, wavelength, and size parameter or ratio
of the equivalent sphere’s circumference to the-
wavelength. The parameter p provides a measure
of the phase shift experienced by an axial ray pass-

ing through the center of the particle. The vertical
L 1 cemmmnnn ¢ tha ranoe nf measnred
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Several conclusions can be drawn from Fig. 1.
First, for p =< 4, the stacked cylinders have about
the same dependence of Q,,, on p as do equal volume
spheres. Second, for p > 4, Q. is systematically
higher than the value appropriate for the equivalent
sphere. This disagreement is not unexpected and can
be understood in the following way: In the limit of
p > 1, the total cross section of an arbitrarily shaped
particle tends asymptotically toward twice its physi-
cal cross section (van de Hulst, 1957). Recalling that
Qext, as given in Fig. 1, is defined as the ratio of the
total cross section to the physical cross section of
an equal-volume sphere, we expect that Q,, will
tend toward 2(A;./Agpere) for a randomly oriented,
large, irregular object, where A, and A ppere are the
projected surface areas of the irregular object and an
equal volume sphere, respectively. Note that had we
defined Q,,, as equal to the ratio of the total cross
section to the physical cross section of the irregular
particle, Q.,, would approach 2. Over the gamut of
particle shapes, a sphere has the smallest ratio of
surface area to volume. Hence A; > A and
Qext > 2.

Other laboratory measurements on irregular par-
ticles support the above conclusions and provide
some further information. Berry (1962) studied the
extinction characteristics of randomly oriented,
monodisperse cubes of silver bromide at visible
wavelengths. These measurements showed that, in
the Rayleigh domain p =< 1, Q. is quite close to
that expected for equal volume spheresc Also, at
larger values of p, Q.. for the cubes displayed a
resonant structure similar to that of spheres, al-
though the primary maximum appeared to occur at a
somewhat larger value of p than that expected for
an equal volume sphere. This latter result is sup-
ported by Proctor and Barker’s £1974) and Proctor
and Harris' (1974) visible-wavelength studies of
randomly oriented polydispersed samples of ir-
regularly shaped diamond and quartz particles,
respectively, as well as the microwave measure-
ments of Greenberg et al. (1961) on prolate spheroids.
Proctor and Harris also found that the extinction
efficiency had an almost constant value for p > 10,
i.e., in this domain it closely approached the asymp-
totic value appropriate for geometrical optics. :

Not only do randomly oriented, irregular particles
have approximately the same cross section as that of
equal volume spheres when p < some critical value

.Po = several, but there also appears to be a similar

equivalence for the angular dependence of the scat-
tered intensity, the phase function (Zeruil and Giese,
1974). This deduction is illustrated in Figs. 2a and 2b
for small, randomly oriented cubes and corrugated
spheres, respectively (ibid.). The dots show the
measured phase function, while the solid lines show
the predicted Mie behavior.

When p > p,, nonspherical particles show marked
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deviations in their phase functions from that of their
spherical counterparts, especially at intermediate
and large angles of scatter. This point is illustrated
in Figs. 3 and 4, which display measurements for
randomly oriented cubes (Zerull and Giese, 1974)
and flat flakes (Holland and Gagne, 1970), respec-
tively. In these figures the dots and vertical bars in-
dicate the observed values and their associated
error bars, while the dashed and dotted lines in-
dicate the Mie predictions for equal volume spheres
and equal area spheres, respectively. The solid
 line in each figure is discussed later. In both figures,
resonant features, such as the Mie backscatter peak,
are absent for the nonspherical particles. Thus, in
the backscatter direction, the Mie curves lie above
the observed ones, while at intermediate angles of
scatter, the converse is true. We also note that at
those angles where there is a sizeable departure
from Mie scattering behavior, the logarithm of the
phase function varies approximately linearly with
scattering angle.

Figs. 3 and 4 also imply that Mie scattering theory
provides an approximate fit to the measurements at
small angles of scatter. Further evidence for this
proposition is given by the visible light scattering
experiments of Hodkinson (1963) and Ellison (1957).

SEMI-EMPIRICAL THEORY

LOG,, (PHASE FUNCTION)
o
T

H
7
P %, T {221
MIE (EQUAL VOLUME —%. MIE (EQUAL AREA ._.?,.'/
SPHERES) -, SPHERES) o
1 Seans? =
@ ZERULL AND GIESE DATA
11 CUBES, 19<x< 178
m=1.57+0.008 |
o SEMI-EMPIRICAL THEORY: x, =4,G=15,r= 13
-2 1 1 I L | | 1 |
o 20 40 60 B0 100 120 140 180 180

SCATTERING ANGLE, deg

Fig. 3. Comparison of the phase function for scattering by a
distribution of various sized cubes (dots with error bars), as ob-
tained by numerically integrating resalts from analog measure-
ments (Zerull and Giese, 1974), with the predictions of Mie theory
for equal volume and equal area spheres and the semi-empirical
theory of this paper. Each theoretical curve has been normalized
1o its correct vertical position with respect to the data points.
Consequently, the normalization convention differs slightly
among the three theoretical curves.
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Fi6. 4. Comparison of the measured phase function for
scartering by an ensemble of flat plates, dots with error bars
(Holland and Gagne, 1970), with the predictions of Mie theory
for equal volume and equal area spheres and the semi-empirical
theory of this-paper. A value of r = 2.0 yields a virtually identi-
cal result for the semi-empirical phase function.

Hodkinson compared the scattering behavior of
large quartz and flint particles having almost the
same index of refraction and size distribution.
Although the' flint particles appeared much more
irregular under microscopic examination, the two
sets of material exhibited almost identical scatter-
ing diagrams at small scattering angles (=<60°).
Hodkinson also showed that at small scattering
angles, the measured phase function of large quartz
and diamond particles (x ~ 10-100) were very
similar to those of equal area spheres. The phase
function of the latter was approximated by the sum
of the diffraction pattern of an opaque disk of equal
projected area and the external reflection and inter-
nal refraction components calculated according to
geometrical optics theory. Hodkinson and Green-
leaves (1963) had previously shown that this recipe
gave a good fit to Mie theory results at small scatter-
ing angles.

Finally, Ellison (1957) measured the extinction
efficiency of randomly oriented silica dust (x ~ 10—
100) with a detector whose acceptance angle in-
cluded the light scattered at small scattering angles.
He showed that a prescription similar to that of
Hodkinson gave predictions for the fraction of the
scattered beam within his acceptance angle which
were consistent with the observed dependence of
the measured efficiency on x.
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TasLE 1. Model eters derived from. laboratory measurements.
M (cos@)e
(equivalent
Data? mb X® G* {cosg) spheres)
—

Large cubes

x =59-17.8

n{x) = nex— 1.57 + 0.006 4 1.5t0 2.0 0.540 0.672
All cubes

x = 1.9-17.8

n(x) = ngx=3 1.57 + 0.006: 4 1.5 to 2.0 0.560 0.650
All cubes

= 1.9-17.8

nfx) = ngx~%% [.70 + 0.015i 2 15 0.482 0.681
Octahedra L

x = 59-9.1

n(x) = ngx=*3 1.50 + 0.005¢ 7-8 2 0.520 0.570
Convex-concave

= 59-17.8

n(x) = nex~*3 1.50 + 0.005{ 10 3to4 0.601 0.719
Flat plates or flakes

x = 2-20

log-normal 1.57 to Oi 3 5 0.600 0.675

2 The measurements on the cubes, octahedra and convex-concave particles were made by Zerull and Giese (1974) and Zerull
(1976), while those for the flat flakes were obtained by Holland and Gagne (1970). In the case of the convex-concave particles,
we used an average of the separate measurements made on convex and concave particles. The information given in this co[urnn
includes the range of x values covered by the measurements and the size distribution n(x) within this range.

® / is the complex index of refraction.

¢ x, and G are parameters of the nonspherical particle scattering theory, which were derived by matching the measurements

cited in the leftmost column. In the case of the cubes and the convex-concave particles, the parameter r was estimated to be ~1.3,
while it was found to be ~1.1 for the octahedra. For the flakes, the value of r may not be accurately obtained due to the choice
of equal area spheres as reference material and the relatively small contribution of the particles with x < x, (see Section 3c).
Values of 1.3 and 2.0 both provide virtually identical resuits. From stnctly geometrical considerations, r should equal 13 for

cubes and about 1.1 for octahedra. The parameters x,, G and r are defined in the text.

4 See Eq. (9).

the data and hence represent close to optimum but
not necessarily the optimum numbers. Further
refinements to the fit do not appear to us to be war-
ranted by the state of either the theory or the data,
The joint influence of the small- and large-size
regime is nicely illustrated in Fig. 7. For this case,
x4 has a value close to the midpoint of the range of
x values included in the size distribution function.
The rise of the phase function in the backscattering
direction is due to the backscattering resonances
present in the small-size regime, while departures
of the observed phase function from the one pre-
dicted by Mie theory at intermediate and large
angles is due to the influence of particles in the
large-size regime and, in particular, to their trans-
mission component.

4. Discussion

The relatively simple structure of our theory
provides insight into the similarities and differences
in the scattering behavior of irregular particles and
that of their equal volume spherical counterparts.
First, according to our theory, polydispersed
ensembles of small irregular particles, i.e., x < x,
for all particles, are expected to exhibit essentially

the same scalar scattering behavior as that of their
equivalent volume spheres. However, as discussed
in Section 3a, such an equality in behavior breaks
down for elongated particles having large ]rﬁ | , with
such particles having higher cross sections than their
spherical ‘counterparts.

Next, we consider an ensemble of large irregular
particles, i.e., x' > x, for all particles. According to
(7a), the average scartering efficiency of such par-
ticles differs from that of equal volume spheres only
by a factor equal to the ratio of their surface areas
r. This parameter is a weak function of particle
shape. But, when 2m;x < 1, the usual situation, the
absorption efficiency of the irregular particles is the
same as that for their spherical counterparts, ac-
cording to (7b). In this case, the single-scattering
albedo of the irregular particles is somewhat higher
than that of the equivalent spheres.

The shape of the phase function at small scat-
tering angles is determined primarily by diffraction
and external reflection. Therefore, it is not signifi-
cantly affected by particle irregularity, except for a
factor of (r)"* by which the radius of the equal vol-
ume spheres must be multiplied in the computation
of the diffraction pattern.

The main deviation in the scattering behavior of
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