Origins Seminar


The Origins Seminar series aim to bring together ISM, star and planet formation people, exoplanets experts, planetary scientists and astrobiologists including topics from molecular clouds through star and planet formation to exoplanets detection and characterization and astrobiology. A number of slots are reserved per semester for the presentation of original research by the EOS/NExSS exoplanet collaboration. The seminar series is organized by Theodora Karalidi, Serena Kim and Gijs Mulders. For more information, contact Theodora Karalidi

All talks are from noon – 1:00pm. The room location varies.

Remote Participation: You can join us virtually via the NExSS-EOS Adobe Connect room (contact Jeanne at for the link) and enter as a Guest.





                 Monday, January 23, 2016; Lunar and Planetary Laboratory 309

                 “HPF and NEID: A new generation of US precision radial velocity machines for exoplanet discovery”

                 Chad Bender, Associate Astronomer, Steward Observatory


The field of exoplanet characterization via ground-based radial velocity measurements is entering a golden era as new purpose-built spectrometers come online over the coming few years. These instruments will provide unprecedented RV precision and push into new wavelength regimes. I will provide a general update on the development status of two of these spectrometers where I am serving as Instrument Scientist, the near-IR HPF and the visible light NEID, and will discuss the science programs that they enable.

HPF is an NSF supported instrument that will provide R~50,000 spectra covering ~0.8 – 1.3 microns, with RV precision of ~1 m/s. It will be deployed to the 10-m Hobby-Eberly Telescope later this year to carryout a survey for Earth-mass planets orbiting in the HZ of M-dwarfs. NEID is a NASA supported instrument that will provide R~100,000 spectra covering 0.38 – 0.92 microns, with RV precision of ~30 cm/s. It will be deployed to the 3.5-m WIYN telescope in 2019, where it will provide support for TESS and carryout a GTO search program to discover Earth-twins.


                Monday, February 6, 2016; Lunar and Planetary Laboratory 309

                “Design of NEID and HPF, two large Echelle spectrographs to search for habitable planets

                Chris SchwabSenior Lecturer Department of Physics and Astronomy, Macquarie University


Extreme precision radial velocities is a key technique in the quest to discover earth like planets. Our team was recently awarded a NASA contract to build a new visible range Doppler spectrograph for the WIYN telescope. This facility, called NEID, will provide better than 25 cm/s Doppler precision, leading the efforts of the US exoplanet community to obtain RV signatures of habitable worlds around solar type stars. In this talk, I will present the instrument architecture, and focus on optical and optomechanical design choices that allow for this Doppler precision to become attainable. I will also present the optical design of the Habitable Zone Planet Finder spectrograph HPF for the Hobby Eberly Telescope, which operates in the near-IR. HPF and NEID share the vacuum tank and environmental control design, an and while similar in size and resolution, use a different optical design to achieve the desired image quality.


                Monday, February 13; 2016; Steward N305

                “Comparative Exoplanetology from observations to cloud models

                Hannah Wakeford, NPP fellow Goddard Space Flight Center


To understand our own solar system formation and composition in a galactic context, comparative climatology is needed with more detailed understanding of planets on an individual and grouped basis. The Hubble Space Telescope (HST) has played a pivotal role in the characterization of exoplanet atmospheres. From the first planets available for such observations we have learned that their atmospheres are incredibly diverse. I present the most recent observation with HST and discuss the impact that clouds can have on observational results and the implications on planetary characterization.


                 Monday, February 20, 2016;  Steward Observatory 550

                 EOS talk: “A revision of Star formation history in Taurus

                 Min Fang, postdoc, Steward Observatory


The Taurus star forming region is one of nearest active low-mass star-forming region in  solar neighbourhood, and provides a unique laboratory to study various hot topics related to star and planet formation.  Star formation in Taurus is believed to start at about 1-2 Myr ago. Recently, we have  discovered a new old pre-main sequence moving group at the east of Taurus. This moving group show kinematics and distance similar to Taurus, and thus could be part of Taurus. This find complicates the star formation history in Taurus. In this talk, I will present some results from this study.


                 Monday, February 27, 2016; Steward N305

                 “Space telescope Exo-P coronagraph contrast limited by polarization

                 Jim Breckinridge, Adjunct Professor of Optical Sciences UofA, Visiting associate California Institute of Technology


Direct imaging spectroscopy to characterize the surface and atmosphere features of exoplanets is a high priority. Our ability to directly image exoplanets is determined by image quality and therefore depends on the design and implementation of the telescope, instrument, detector and calibration methodologies. In space, there is no atmosphere and one might assume that for a telescope perfectly corrected for geometric aberrations, scattered light is limited only by diffraction. This is wrong!

Classic telescope/instrument systems are designed and optimized using geometric aberration to minimize optical path length (trigonometry) errors. Exo-P coronagraphs, with contrast requirements exceeding 10+7 are not classic optical systems. Neither geometric aberration analysis (ray-trace) nor scalar-wave analysis (scalar diffraction) describe the image quality needed by space coronagraphers.

In this Origins Seminar, we examine the role of vector-waves in image formation and show that contrast depends on the phase and amplitude properties (polarization aberrations) of individual surfaces, and masks within the optics train. Exoplanet coronagraphs that are not compensated for polarization aberrations appear to be limited to contrasts between 10+6 and 10+7. We also discovered a source of astrometric errors that might limit gravitational microlensing accuracy and fundamental astrometry.

Under certain conditions, polarization aberrations become important for ground-based telescopes, particularly for the GMT, TMT and the E-ELT.


                 Monday, March 6; 2016; Steward 550

                 EOS talk: TBA

                 Josh Eisner, Associate Professor, Steward Observatory



                 Monday, March 13; 2016; Steward N305


                 Jon Rees, postdoc, Steward Observatory



                 Monday, March 20; 2016; Lunar and Planetary Laboratory 309





                 Monday, March 27; 2016; Steward N305


                 Brian Svoboda, grad student, Steward Observatory



                 Monday, April 3; 2016; Lunar and Planetary Laboratory 309

                 Aaronson Prize symposium: NO ORIGINS



                 Monday, April 10; 2016; Steward N305


                 Regis FerriereAssociate Professor, Ecology and Evolutionary Biology,  UofA and Ecole Normale Superieure



                 Monday, April 17; 2016; Lunar and Planetary Laboratory 309


                 Jeffrey Fung, Sagan fellow, UC Berkeley



                 Monday, April 24; 2016; Steward N305


                 Yifan Zhou, grad student, Steward Observatory



                 Monday, May 1; 2016; Lunar and Planetary Laboratory 309


                 Kevin Wagner, grad student, Steward Observatory



                 Monday, May 8; 2016; Steward N305


                 Laura Schaefer, postdoc, School of Earth and Space Exploration, ASU



                 Monday, May 15; 2016; Lunar and Planetary Laboratory 309

                EOS talk: TBA

                Ben Rackham, grad student, Steward Observatory



                 Monday, May 22; 2016; Steward N305


                 Ilaria Pascucci, Associate Professor, Lunar and Planetary Laboratory





                 Monday, December 12, 2016; Steward Observatory N305

                 EOS talk:Orion: a test bed for studying evolution of protoplanetary disks”

                 Min Fang, postdoc, Steward Observatory


The Orion complex is the most active star-forming region in solar neighborhood, and provides a unique laboratory to study disk evolution because (1) there are a large sample of young stars in wide ranges of stellar masses and ages, and (2) the star formation environments vary from the massive clusters, the medium-size clusters, to the distributed population, which provide us a great opportunity to study disk evolution in different environments at a similar distance. An investigation of protoplanetary disk evolution in Orion, especially in its clusters: NGC 1980, NGC 1977, and Orion Nebula cluster, is part of the large NASA exoplanet program: Earths in Other Solar Systems. In this talk, I will present some results from this project.


                   Monday, December 5, 2016; Lunar and Planetary Laboratory 309

                   “Confronting models of gas and dust evolution in protoplanetary disks with observations

                   Paola Pinilla, postdoc, Steward Observatory


Powerful telescopes such as ALMA and VLT/SPHERE, with their unprecedented sensitivity and spatial resolution, are revealing fascinating structures in protoplanetary disks at different wavelengths. In this seminar, I will summarize the current theoretical efforts to explain these observations. My current models combine hydrodynamical simulations of gas evolution and dust growth, which include the coagulation and fragmentation of particles. I will present how new detailed observations are providing significant insights about how different physical conditions rule the evolution of protoplanetary disks, such as snow lines, potential embedded planets, and spatial changes of disk viscosity. This bridge between models and observations is extending our knowledge of how planets form, and it allows us to have a better understanding of the large diversity of extrasolar systems.

                   Monday, November 21, 2016; Lunar and Planetary Laboratory 309

                   “Studying the habitable zone architecture of exoplanetary systems through observations of exozodiacal dust

                   Steve Ertel, postdoc,Steward Observatory/LBTI


Exozodiacal dust is the extrasolar analog of our own zodiacal dust, i.e., dust inside and around the habitable zone of other planetary systems. Thus, it is an important tracer of the architecture of the inner regions of such systems. Moreover, the dust poses a significant challenge for future space missions attempting to directly image and characterize habitable exoplanets. The dust can be the most luminous component of a system after the host star, but emits predominantly in the near- to mid-infrared where it is outshone by the host star. Thus – and due to the small angular separation from even nearby host stars – it is mostly detected using infrared interferometry which can spatially disentangle the dust emission from the stellar one. 

Since the first detection in 2006, we have come a long way of investigating the nature and origin of this dust, including two large surveys and about 35 detections. The detected dust is more massive and often hotter than our own zodiacal dust which is a significant challenge to explain its presence. I will summarize the state of the art of exozodiacal dust research from observations to modeling and theoretical investigation. I will present recent results and also give an update of the HOSTS survey at the LBTI, currently the most advanced survey searching for habitabe zone dust around nearby main sequence stars.

                 Monday, November 14, 2016; Steward Observatory N305

                 “Exoplanet in the Era of JWST”

                 Jonathan Fraine, postdoc, Steward Observatory


I plan to discuss the four science instruments (NIRISS, NIRSPec, NIRCam, MIRI); I will detail each instruments time series observation modes, the limitations and functionality thereof.  I’ll then discuss the most optimal science that each instrument expects to achieve for exoplanet atmospheres and brown dwarfs; both directly imaged and transiting exoplanets.

                   Monday, November 7, 2016; Lunar and Planetary Laboratory 309

                   “First 3D radiation non-ideal magnetohydrodynamical simulations

                   Mario Flock, postdoc,Interstellar and Heliospheric Physics group, JPL


Many planets orbit within an AU of their stars, raising questions about their origins. Particularly puzzling are the planets found near the silicate sublimation front. We investigate conditions near the front in the protostellar disk around a young intermediate-mass star, using the first global 3-D radiation non-ideal MHD simulations in this context.

The results show magnetorotational turbulence around the sublimation front at 0.5 AU.  Beyond 0.8 AU is the dead zone, cooler than 1000 K and with turbulence orders of magnitude weaker. A local pressure maximum just inside the dead zone concentrates solid particles, allowing for efficient growth.  Over many orbits, a vortex develops at the dead zone’s inner edge, increasing the disk’s thickness locally by around 10%.

We synthetically observe the results using Monte Carlo transfer calculations, finding the sublimation front is bright in the near-infrared.  The models with vertical magnetic flux develop extended, magnetically-supported atmospheres that reprocess extra starlight, raising the near-infrared flux 20%.  The vortex throws a non-axisymmetric shadow on the outer disk.

Radiation-MHD models of the kind we demonstrate open a new window for investigating protoplanetary disks’ central regions.  They are ideally suited for exploring young planets’ formation environment, interactions with the disk, and orbital migration, in order to understand the origins of the close-in exoplanets.

                   Monday, October 31, 2016; Steward Observatory N305

                   “Partitioning of water between surface and mantle: what makes a waterworld?

                   Tad Komacek, grad student, LPL


Terrestrial exoplanets in the canonical habitable zone may have a variety of initial water fractions due to random volatile delivery by planetesimals. If the total planetary water complement is high, the entire surface may be covered in water, forming a “waterworld.” On a planet with active tectonics, competing mechanisms act to regulate the abundance of water on the surface by determining the partitioning of water between interior and surface. We have explored how the incorporation of different mechanisms for the degassing and regassing of water changes the volatile evolution of a planet. For all of the models considered, volatile cycling reaches an approximate steady-state after ~2 Gyr. Using these steady-states, we find that if volatile cycling is either solely dependent on temperature or seafloor pressure, exoplanets require a high abundance (more than 0.3% of the total mass) of water to have fully inundated surfaces. However, if degassing is more dependent on seafloor pressure and regassing mainly dependent on mantle temperature, the degassing rate is relatively large at late times and a steady-state between degassing and regassing is reached with a substantial surface water fraction. If this hybrid model is physical, super-Earths with a total water fraction similar to that of the Earth can become waterworlds. As a result, further understanding of the processes that drive volatile cycling on terrestrial planets is needed to determine the water fraction at which they are likely to become waterworlds.

                   Monday, October 24, 2016; Lunar and Planetary Laboratory 309

                   “OSIRIS-REx: NASA’s Mission to Sample an Ancient Asteroid

                    Alessondra Springmann, grad student, LPL


NASA’s OSIRIS-REx asteroid sample return mission launched on September 8 to visit asteroid Bennu, a carbon-rich, near-Earth asteroid. The spacecraft will rendezvous with the asteroid in 2018 and ultimately bring samples of Bennu back to Earth in 2023.  Returning up to 2 kg of extraterrestrial material, samples from asteroid Bennu may hold clues to the origin of the solar system and the organic molecules that could have seeded life on Earth. After an exciting launch of OSIRIS-REx last month to its asteroid target, I will talk about what scientists have learned about asteroid Bennu already from terrestrial telescopes, scientific results we expect from the mission upon arrival at the asteroid, and the importance of bringing samples of an asteroid to Earth for further study.

                   Monday, October 17, 2016; Steward Observatory N305

                    “Probing External Feedback on Young Stars: Proplyds in NGC 1977 and YSOs in W3-AFGL333

                    Jinyoung Serena Kim, Associate Astronomer, Steward Observatory


The star formation environment is likely to affect the evolution of circumstellar disks around young stars. UV radiation driven winds from massive stars can shorten the lifetime of protoplanetary disks in their immediate surroundings. I will present seven new proplyds around a B1 star we identified in NGC 1977 (30’north of the Orion Nebula Cluster), a direct sign of feedback from a massive star. I will also mention our findings of a very low mass proplyds in Orion Nebula Cluster.  I will then discuss studies of the young stellar objects in AFGL333 in W3, located in a high density layer between an expanding H II region and a giant molecular cloud.

The proplyds in the vicinity of the B1 star (c Ori) in NGC 1977 are the first proplyds found near a B star. Previously known proplyds are all found in immediate vicinity of O stars, e.g., theta^1 Ori C.  I will show the proplyds identified in archival HST and Spitzer images. The sizes of the proplyds are consistent with our calculation for  FUV radiation from a B1 star, about 10-30 times less than that around the O star in the Orion Nebula Cluster.  

In the second half of the talk I will present our recent studies of the young stellar population in W3-AFGL333, located in a high density layer between the expanding W4 HII region and the W3 giant molecular cloud.  We find that the young stellar population in AFGL333 lacks massive stars, compared to other known clusters in main W3 complex including IC 1795 and W3-Main.  Star formation activity in AFGL333 is comparable to that of nearby low-mass star forming regions despite being near OB stars. 

                   Monday, October 10, 2016; Lunar and Planetary Laboratory 309

                   “Technology Needs to Discover Earth 2.0

                    Nick Siegler, Technology Development Manager for the NASA Exoplanet program, JPL


The first evidence of life on an exoplanet is likely to be based on various lines of evidence, most importantly being “bio-hints” in the atmospheres of these distant worlds. While spectroscopy of extremely faint sources is not trivial the primary technology challenge, the “tall tent pole”, is starlight suppression – blocking the bright light from the target star so as to capture the faint reflected light of the exoplanet. Today I will present the status of technology development directed towards internal occulters (aka coronagraphs) and external occulters (aka starshades), along with a look forward.

                   Monday, October 3, 2016; Steward Observatory N305

                   “Polarization of Young Brown Dwarfs

                   Elena Manjavacas, postdoc, Steward Observatory


Linear polarization can be used as a probe of the existence of atmospheric condensates in ultracool dwarfs. Models predict that the observed linear polarization increases with the degree of oblateness, which is inversely proportional to the surface gravity. We therefore expect a higher degree of linear polarization for young brown dwarfs. We aimed to measure optical linear polarization for a sample of six young brown dwarfs, with spectral types between M6 and L2, and cataloged previously as objects with low gravity using spectroscopy. We collected linear polarimetric data in the I and R-band using CAFOS at the 2.2 m telescope in Calar Alto Observatory. We employed the flux ratio method  to determine the linear polarization degrees for our targets. With a confidence of 3-sigma, our data indicate that all targets in our sample have a linear polarimetry degree in average below 0.69% in the I-band, and below 1.0% in the R-band, at the time they were observed. We only detected positive linear polarization for object 2M0422 with a degree of p* = 0:81  0:17% in the R-band.

                   Monday, September 26, 2016; Lunar and Planetary Laboratory 309

                   “Juno at Jupiter: initial science orbit”

                   Bill Hubbard, professor, LPL


The solar-powered geophysical orbiter Juno was successfully injected into a low-periapse Jupiter orbit on 4 July.  The first bound orbit completed one month ago, with the first perijove (PJ1) on 27 August.  Virtually all science instruments acquired data during an hour or two while the spacecraft approached to within ~5000 km of the cloudtops.  The radio-science/gravity experiment of primary interest to interior studies was deliberately not operating at highest precision during this initial pass.  There will now be a hiatus until after PJ2 (19 October) due to a further main-engine burn to reduce Juno’s orbital period to 14 days for the main part of the mission.  I expect to see the first high-precision gravity results after PJ3 on 2 November, although initial results are quite good and eliminate some models already.  My talk will touch on some of the theoretical work on Jupiter’s interior that we are testing with Juno, and I’ll describe the most relevant experiments.  During 2017 we’ll harvest new data every two weeks, steadily driving down the noise floor and filling in a gravity and compositional mosaic.

                     Tuesday, September 6, 2016; Steward Observatory N305

                     “Demystifying brown dwarf protoplanetary disk chemistry through thermochemical modelling

                      Aaron Greenwood, grad student, Kapteyn Astronomical Institute, University of Groningen 


The physical properties of brown dwarf disks, in terms of their shapes and sizes, are still largely unexplored by observations. Only with ALMA can we observe these disks in detail. To what extent brown dwarf disks and T Tauri disks are similar is currently unknown, and this work is a motivation towards establishing a relationship through observations.

We use the code ProDiMo to produce 2D thermochemical models of the protoplanetary disks around brown dwarfs, with the aim of accurately modelling the disk chemistry. We use previous observations of the brown dwarf disk ISO-Oph 102 to inform a fiducial model around which we build a small grid of brown dwarf disk models, in order to explore the structure of CO isotopologue, HCN, and HCO+ lines. Although these two lines have not yet been observed in a brown dwarf disk in the sub-mm, they are useful tracers of warm surface-layer gas and disk ionization.

We present the idea that the physical and chemical processes in brown dwarf disks are similar to those that occur in T Tauri disks, because our models suggest that these smaller disks are driven by the same chemical processes. Being able to characterize the chemical and dust properties of brown dwarf disks will have wide-reaching implications towards the eventual goal of assessing the prospects for planet formation in these disks. 

                     Wednesday, August 17, 2016; Steward Observatory N550

                     First Results From the Near-InfraRed Disk Survey (NIRDS)

                     Carey M. Lisse, Principal Staff Scientist SRE, SES, Johns Hopkins


Understanding the origin & evolution of our own Solar System is a major NASA strategic goal, and recent planetary science missions (e.g., Dawn, MESSENGER, New Horizons, Rosetta) have produced a wealth of new insights. However, much of the local evolutionary evidence has been erased over the last 4.5 Gyr. Circumstellar exo-disks are not just the signposts of exosystems with planets, but the signposts of systems that are rapidly evolving. Finding analogs in nearby systems for solar system events – like the collisionally active Kuiper Belt + Late Heavy Bombardment in η Corvi; the dense zodiacal cloud formed by asteroid belt collisions in HD69830; or the silica rich torus found around HD172555 , a relic of a planetary scale massive hypervelocity impact like the ones that created the Earth’s Moon, stripped Mercury of its surface crust, & knocked Uranus on its side – allows us to learn more about the physics causing these processes to occur, what they create, and how systems evolve.

In 2010 we began a near-infrared (NIR) spectral survey of bright debris disks with reported IRAS excesses and optically resolved disks. Our novel R~1000, 1% precision Near IR Disk Survey (NIRDS) was performed using the SpeX instrument at the NASA/IRTF from 0.8-5.0 um at a precision and resolution never before undertaken. For disks, the NIR is a poorly studied spectral regime, as the star is typically assumed to dominate the system’s emergent flux. Even for “famous” & well-studied systems there is a dearth of good NIR spectra in the literature, and primary star classifications are often in error. But with 1% precision and 10% accuracy, we have been able to detect excess emission above the photosphere due to circumstellar dust and gas down to as low as 1.5 µm, while finding many important new results for supposedly well-studied and picked-over systems. There is also a strong need amongst observer teams performing state of the art coronographic & interferometric H/K-band imaging (e.g., CHARA, FLUOR, GPi, LBT, SPHERE), to understand the spectral behavior of the system over the entire 0.8 – 5.3 µm wavelength grasp. 

To date we have observed 45 NIRDS systems. In this talk we report the first aggregate findings of our survey of 40+ disk systems to help answer the following questions: (1) Are gas- and hot dust-rich rich YSOs and transition disks common amongst the known circumstellar disk population?  (2) How many of the known circumstellar disk systems have incorrectly typed primary stars that could affect our understanding of star-disk-planet interactions and disk/planet hosting frequencies? (3) Do dense warm dust systems preferentially occur for disk systems in the 10 – 300 Myr terrestrial planet formation era? (4) Does the “typical” circumstellar disk states of primary star + Kuiper Belt Star show evidence for material from each of the different kinds of small outer solar system bodies (Comets, Centaurs, KBOs) like the active comet debris in HR4796A and the icy KBO debris in Fomalhaut and HD 32297?  Are large radius, narrowly confined rings the signposts of outer planet formation? (5) What causes the diffuse > 1000 K hot dust in older systems? Magnetic trapping of charged sungrazing body debris or evaporation of zody cloud dust infalling due to P-R  Production of close-in dust from close-in evaporating planets? (6) Is there more evidence for mature solar system processes, like (η Corvi’s Late Geavy Bombardment and HD 69830’s asteroid family formation, in the disk record?

                      Monday, April 25, 2016; Steward Observatory N305

                      “Raising the questions of exo-ecosystem emergence, function, and feedbacks on exoplanet environment” by Regis Ferriere, Associate Professor, Ecology and Evolutionary Biology,  UofA and Ecole Normale Superieure



                     Monday, April 18, 2016; Lunar and Planetary Laboratory 309

                      EOS talkTracing solids and vapor during dust growth in planet-forming regions” by Sebastiaan Krijt, postdoc, Department of the Geophysical Sciences, University of Chicago


The distribution of volatiles (e.g., water, CO) in planet-forming environments is intimately tied to the dynamical and collisional evolution of the solid dust population. I will present new numerical models that treat dust coagulation/fragmentation, dust dynamics, simple gas-grain chemistry, and vapor diffusion simultaneously, and explore the connection between the water vapor in the disk atmosphere and the size-distribution and ice-to-rock ratios of the dust grains growing in the midplane.

                      Monday, April 11, 2016; Steward Observatory N305

                      “The Late-time Formation of Close-in Exoplanets” by Eve Lee, grad student, UC Berkeley


Close-in exoplanets come in various sizes and masses. I will discuss the origin of three types of such planets: super-Earths, the most common; and the rarer super-puffs and hot Jupiters. The riddle posed by super-Earths (1–4 Earth radii, 2–20 Earth masses) is that they are not Jupiters: their core masses are large enough to trigger runaway gas accretion, yet somehow super-Earths accreted atmospheres that weigh only a few percent of their total mass. I will show that this puzzle is solved if super-Earths formed late, in the inner cavities of transitional disks. Super-puffs present the inverse problem of being too voluminous for their small masses (4–10 Earth radii, 2–6 Earth masses). I will show that super-puffs most easily acquire their thick atmospheres as dust-free, rapidly cooling worlds outside ~1 AU then migrate in just after super-Earths appear. Finally, I will review theoretical and observational reasons why I believe hot Jupiters migrated to their current locations. Through N-body calculations, I will show that if hot Jupiters migrated by Lidov-Kozai oscillations driven by external planetary perturbers, close-in super-Earth companions would have been perturbed onto their host stars. This naturally explains why most hot Jupiters have no close-in transiting neighbour.

                      Monday, April 4, 2016; Steward Observatory 550

                      “Maximizing Transiting Exoplanet Science with JWSTby Everett Schlawin, postdoc, Steward Observatory


JWST offers unprecedented sensitivity, stability and wavelength coverage for transiting exoplanet science, enabling studies of planet composition, metallicity and cloud coverage. The wavelengths added beyond Hubble Space Telescope’s WFC3 grism (1.7um) enable compositional constraints of key atmospheric gases like CH4, CO2, CO and NH3 in addition to the H2O abundances already measured. There are many different instruments and modes available to observe planets during primary transit, secondary eclipse and phase curves, so I will discuss the strategies for observing with JWST and the relative benefits of different configurations. I will discuss the forecasted results and planetary parameters that can be retrieved with different instruments, considering cloudy versus clear compositions. The NIRCam instrument will be a vital tool for the 1-5 um wavelength range and I will discuss its existing and not-yet-approved operational modes. I will also present recent laboratory tests of the flight NIRCam instrument to prepare and calibrate it for the extremely high precision measurements needed for transiting planet science.

                      Monday, March 28, 2016; Steward Observatory N305

                      “Orbital Stability of High Mass Planets & Implications for Debris Disk Systems” by Sarah Morrison, grad student, LPL


I will discuss the relationships between planet separation, mass, and stability timescale for high mass multi-planet systems containing planet masses and multiplicities relevant for planetary systems detectable via direct imaging.  I apply these results to compare to giant planet occurrence and detection rates derived from direct imaging within young debris disk systems of the ScoCen association. These efforts begin to probe the ease of giant planet formation at wider separations than typically sampled by other exoplanet detection methods and perhaps on scales more similar to our Solar System.

                      Monday, March 7, 2016; Lunar and Planetary Laboratory 309

                      EOS talk: “Delivery of water and organics to early Earth: insights from quantum chemistry” by Krishna Muralidharan, Assistant Professor, Materials Science and Engineering, UofA


Using first-principles methods, we show that molecular water and a wide-variety of organics found in the solar nebula could have been directly incorporated on to planetary grains, implying a possible endogenous source of life on Earth. 

                      Monday, February 29, 2016 ; Steward Observatory N305 

                      “The Formation and Evolution of Protoclusters in the Milky Way” by Brian Svoboda, grad student, Steward Observatory


High-mass stars strongly influence the evolution of galaxies and the ISM, yet their formation remains and open problem in contemporary astrophysics. A major bottleneck in the study of high-mass star formation is the difficulty in identifying and systematically analyzing the properties of massive starless clumps, the incipient phase of protocluster evolution. To this end, we classify a sample of 4683 molecular cloud clumps identified from the Bolocam Galactic Plane Survey by combining observational diagnostics of star formation activity from a variety of Galactic plane surveys. We identify a sub-sample of 2222 (47.4%) starless clump candidates, representing the largest and most robust sample of pre-protocluster candidates to date. We find that starless clumps are colder, less turbulent, smaller, less massive, and less centrally concentrated than protostellar clumps. I will also discuss clump growth and lifetimes, as well as recent W-band GBT and K-band VLA observations for a sub-sample of the most massive and nearby starless clump candidates.

                      Monday, February 22, 2016; Lunar and Planetary Laboratory 309

                      “Imaging Protoplanets: Observing Transition Disks With Non-Redundant Masking” by Steph Sallum, grad student, Steward Observatory


Transition disks, protoplanetary disks with inner clearings, provide an opportunity to study planet formation in action. I will present new spatially resolved observations of the T Cha and LkCa 15 transition disks, both of which host posited substellar companions. Multi-epoch VLT and MagAO observations of T Cha are incompatible with the presence of a companion. Conversely, new LBT and MagAO datasets confirm the previous detection in LkCa 15. These new observations along with re-analyzed archival Keck data suggest the presence of multiple forming planets in the LkCa 15 disc gap. I will describe how scattered light from the outer disk can match the T Cha datasets, why such a model is unsuitable for LkCa 15, and the characteristics of the LkCa 15 protoplanetary system.

                      Monday, February 15, 2016; Steward Observatory N305

                      “Composition and distribution of clouds in hot Jupiters : an L/T-like transition ?” by Vivien Parmentier, postdoc, LPL


Over a large range of equilibrium temperatures clouds seem to dominate the transmission spectrum of hot Jupiters atmospheres but no trend allowing the classification of these objects have yet emerged. Recently observations of the light reflected by these planets provided insight on the cloud distribution on the dayside of these planets : for a handful of planets clouds seem more abundant on the western than on the eastern side of the dayside hemisphere and, more importantly, this asymmetry depends on the equilibrium temperature of the planet. 

Using state-of-the-art three dimensional models of hot Jupiters atmospheres I will show that longitudinal and latitudinal assymetry in the cloud coverage is expected for these hot planets. Such an asymetry can strongly bias the retieved abundances from transmission and secondary eclipse spectra. The longitudinal cloud asymetry being a strong function of the condensation temperature of the cloud species, it is a telltale of the cloud composition. An L/T transition is expected for hot Jupiters and possibly seen in the data : silicate clouds should disappear from the cooler planets and be replaced by to sulfide clouds.  

                        Monday, February 8, 2016; Lunar and Planetary Laboratory 309

                        “Imaging planetary systems with the LBTI” by Denis Defrere, postdoc, Steward Observatory/LBTI


The Large Binocular Telescope Interferometer (LBTI) is a strategic instrument of the LBT designed for high-sensitivity, high-contrast, and high-resolution infrared (1.5-13 microns) imaging of nearby planetary systems. To carry out a wide range of high-spatial resolution observations, it features various single-pupil imaging modes (e.g., AO imaging, coronagraphy, integral field spectroscopy, non redundant aperture masking) and can combine the two AO-corrected 8.4-m apertures for Fizeau or nulling interferometry. It also has broadband, narrowband and spectrally dispersed capabilities. In this talk, I present its two key surveys and review its latest scientific highlights. I also describe recent instrumental milestones such as first-light images with the integral field spectrograph and record-setting interferometric nulling observations. 

                      Monday, November 23, 2015; Steward Observatory N305

                       EOS talk: “Quantifying the Transition from Non-Living to Living Matter” by Sara Imari Walker, Assistant Professor, School of Earth and Space Exploration, Arizona State University


An important goal in astrobiology is to identify what features of biological organization may be universal to life and potentially distinguish living systems from other classes of physical system. The concept of “information”, for example, is increasingly cited as an important property of biological systems, but it is unclear in what sense information can uniquely characterize life. To address this problem, I present two models, which demonstrate how concepts from information theory can be used to uniquely identify the living state. The first model presents a phase transition from “non-life” to “life”, characterized as non-replicating and replicating respectively, which displays several features suggestive of interesting physics underlying the origin of life. The second set of models compare the informational properties of biological networks to two classes of null models, using the fission yeast  (Schizosaccharomyces Pombe) and the budding yeast (Saccharomyces cerevisiae) cell cycle regulatory networks as a case study. Our results show that informational structure can distinguish biological networks from random, even in cases when topology alone is insufficient. I discuss implications for our understanding any distinctive physics operative in life that might apply to life here on Earth and potentially elsewhere.

                      Monday, November 23, 2015; Lunar and Planetary Laboratory 309

                      EOS talk: “Extreme-AO Imaging of Disks around Intermediate-Mass Stars: Discovery of a Two-Armed Spiral Disk and a Warped Edge-on Debris Disk” by Kevin Wagner, grad student, Steward Observatory


In their first years of operation, extreme adaptive optics and coronagraphic imaging facilities (e.g. SPHERE, GPI, LBT/AO, MagAO, SCExAO) are pushing forward the boundaries of discovery in protoplanetary disks. These recent observations are revealing structures previously unresolved/undetected and discovering disks that have never before been imaged. This talk will focus on our new discoveries with VLT/SPHERE of a beautiful two-armed spiral disk with a large gap (the third known of its kind) and an edge-on warped debris disk – similar to the warp induced by the planet in Beta Pic. Following the details of the discoveries, these disks will be placed in the context of the few other presently identified examples of similar disks, which provide important constrains on models of planet-disk interactions and protoplanetary disk evolution.

                     Monday, November 23, 2015; Lunar and Planetary Laboratory 309

                      EOS talk: “Planets Around Low-mass Stars: Population Statistics and Formation History” by Gijs Mulders, postdoc, LPL


Exoplanet studies around stars of very different masses can pin down specific physical processes shaping the final architecture of planetary systems.  Our recent work based on data from the Kepler Space Telescope shows that the population of planets at short orbital periods is stellar-mass dependent. Lower mass stars contain fewer giants, but more planets overall. The heavy-element mass of planetary systems anti-correlates with stellar mass, in stark contrast with observed protoplanetary disk masses which show a positive correlation. The increased efficiency at which low-mass stars form planetary systems close to their host stars shows that inward migration of planetary building blocks plays a crucial role in the planet formation process.